研究協力のお願い

昭和大学横浜市北部病院では、下記の臨床研究を行います。研究目的や研究方法は以下の通りです。この揭示などによるお知らせの後、臨床情報の研究使用を許可しない旨のご連絡がない場合においては、ご同意をいただいたものとして実施されます。皆様におかれましては研究の趣旨をご理解いただき、本研究へのご協力を賜りますようお願い申し上げます。

この研究への参加を希望されない場合、また、研究に関するご質問は問い合わせ先へ電話等にてご連絡ください。

研究課題名:
大腸粘膜下層剥離術における穿孔予防のための人工知能による危険認識システムの構築

1. 研究の対象
2009年1月から2019年10月までに昭和大学横浜市北部病院において大腸内視鏡検査を実施し、内視鏡的粘膜下層剥離術にて病変を切除された方

2. 研究目的・方法
A. 研究の背景及び目的

A-1) 研究の背景
内視鏡的粘膜下層剥離術（ESD）により、大腸腫瘍の大きさに関係なくすべての早期癌の内視鏡的切除が可能となった。しかししながら、高い偶発症率が問題となる。
これは、ディープラーニングと呼ばれる AI 技術をベースとしており、ポリープのリアルタイム検出を可能としている。ポリープがある画像のある画像を機械学習させる方式だが、実際のポリープ自体を認識
研究の概要
ESDにおいて、穿孔する前段階として電気メスによる筋層の損傷・切断がある。ESDとは、粘膜・粘膜筋板を切開後、粘膜下層を剥離していく方法ですが、粘膜下層を剥離している最中には電気メスの先端を内視鏡画面から視認できません。電気メスの先端を視認できないことにより、粘膜下層を剥離しているつもりでも筋層を損傷・切断してしまう現象が発生してしまいます。そこで電気メスが粘膜下層を剥離している画像を、筋層を切ってしまっている危険な画像と切っていない安全な画像の2群に分類し、AIに機械学習させます。当院の先行研究であるポリープ自動検出システムを応用することにより、ESD中の穿孔を来すような危険な画像を自動認識するシステムを構築する。

AIによる穿孔予防のためのオートストップシステムを構築したと考えています。
当院の先行研究であるポリープ自動検出システムを応用することにより、ESD中の穿孔を来すような危険な画像を自動認識するシステムを構築する。そのシステムのシグナルを受信し、電流を ON/OFF するコードを電気メスとペダルの間に配置する。このシステム・装置によりESD中の穿孔をゼロにすることが可能となる。治療に使用する場合に新しい装置は必要としません。このシステムのシグナルを受信する装置は、現在一般家庭にある、静電気による音がON/OFFとなる装置から応用でき簡単に使用できると考えています。

A-1-2）この研究に期待される効果、性能
期待される効果、性能は以下の通りである。

20mm以上の大腸病変を対象とし、大腸 ESD を施行中に録画した内視鏡画像から画像特徴量を解析することで、電気メスが安全な位置にあるかの評価を行う。電気メス使用しようとして、フットスイッチを踏んで電気を流そうとしても、危険な位置にある場合には電流を自動停止するものである。
これにより大腸 ESD 中の筋層損傷・穿孔を減らすことが可能となると考えています。
今回はまずオートストップするシステムを構築することが主目的で、実際の大腸 ESD に使用するわけではありません。

A-2）研究の目的
大腸 ESD を対象とした、穿孔予防のための人工知能による危険認識システムの構築

B 研究の方法及び期間

B-1）実施施設
昭和大学横浜市北部病院 消化器センター
なお、本プログラムは名古屋大学大学院 情報科学研究科・森健策研究室がアルゴリズム開発を行い、
サイバネットシステム株式会社が実装を行い開発する予定です。

B-2）評価項目
システム構築のための教師データとして使用しなかったサンプル動画に対しシステムが正常に作動するかを検証する。

安全性評価項目
本研究は介入のない観察研究であるため安全性評価項目は設定しない。

B-3）研究における介入の概要
本研究は介入のない観察研究であるため、本項は該当しない。

B-4）研究における介入の削付
本研究は介入のない観察研究であるため、本項は該当しない。

B-5）研究の方法と情報の入手方法
本研究では、通常診療の範囲内で得られた大腸内視鏡画像を匿名化し情報として収集する。この画像にはB-5-1項以下の手法で、教師データ情報が付与され解析に使用される。なお、本研究によって画像提供いただく患者に新たな治療や追加の検査は一切実施しない。したがって本研究は介入のない観察研究である。

◆教師データ（用語の解説）
人工知能などの学習・性能評価の際に必要な画像に付与されるメタデータ。本プログラムの場合、大腸ESD中動画内の情報である電気メスの位置が安全・危険かどうかを教師データにあたる。

B-5-1）学習用・試験用画像の取得方法
学習用と試験用の画像については、別個の独立した症例を使用する。なお学習用画像は2009年1月から試験開始前までの期間に昭和大学横浜市北部病院消化器センターで撮影された画像を使用する。

試験用画像は、昭和大学横浜市北部病院で撮影された画像のうち学習に使用していいないものとする。なお、使用する内視鏡システムはB-10項参照のこと。

学習用画像は、動画内の電気メスを安全か危険かでアノテーションされた合計360,000画像（1秒30フレームで2000分の動画を解析予定）を目標とし集積する。（アノテーションとは、学習用画像に対して教師データを付与することである。アノテーションされた画像は、学習用画像及び試験用画像のゴールドスタンダードとして利用される。）
また、撮影された内視鏡画像は、外部等に提出する前に匿名化用プログラムを用いて、画像上の個人情報（ID、名前、生年月日、検査日）を削除し、ファイル名についてもランダム変換しておく。

B-5-2）性能評価方法
アノテーションした画像で学習用として使用しなかったものを試験用画像として解析し、解析結果をもとに内視鏡専門医によりアウトプットの精度を評価する。

B-5-3）外部専門委員による試験用画像の審査
選定された、アノテーションがなされた大腸内視鏡画像は、本研究組織に属していない内視鏡専門医3名の外部専門委員の合議（判断が割れた場合には多数決）により、画像とアノテーションの組み合わせが不適切でないかどうかの審査を受ける。
外部専門委員とは、大腸ESDの経験が100例以上あり、本研究組織に属していない内視鏡専門医と定義する。上述の選定作業の結果、「不適切」と判定された画像については、試験対象から削除する。

B-5-4）試験用画像の品質管理・試験用画像の解析
試験用画像の解析手順
（B-5-3）で試験問題画像の作成、アノテーション、外部専門委員による審査及び品質管理が完了した後に、後日、試験用画像の解析を行う。
出力された結果ファイルは、読み取り専用に変換し修正不可能な状態にして、外部機関に提出し保管を依頼する。

B-5-5）結果の解析方法について
B-5-4項の解析結果については、表計算ソフト（Excel等）で読み取り可能なフォーマットとして出力され、外部機関（イーピーエス株式会社）を経由してCNメディカル・リサーチ（統計解析担当）に送られ、B-7項に基づいて統計解析及び評価を行う。

B-6）研究中止基準
研究担当医師は、研究期中中に下記に該当する研究対象者（内視鏡画像の提供及び利用について同意された患者）が発生した場合には、当該研究対象者に対する研究を中止する。また研究の中止又は中断を決定した時は、研究対象者に対する適切な対応をする。
（1）研究対象者より中止の申し入れがあった場合
（2）研究開始後、研究対象者が対象症例ではないことが判明した場合
（3）本研究実施計画書から重大な逸脱があり評価不能と判断される場合
（4）その他、研究担当医師が研究の継続を困難と判断し中止が妥当と判断した場合
B-9）本臨床研究で用いる規準定義

B-9-1）解剖学的事項
下記の大腸癌取扱い規約第9版の定義を用いる。

B-9-2）大腸の定義
大腸とは、結腸及び直腸からなる。

B-9-3）大腸の区分
大腸を次の8領域に分ける（図5）。

G（盲腸）回盲弁の上唇より尾側の囊状部。上行結腸との境界は回盲弁の上唇の高さ
A（上行結腸）盲腸に続き、右結腸曲に至る部分
T（横行結腸）右及び左結腸曲に挟まれた部分
D（下行結腸）左結腸曲からS状結腸起始部（ほぼ腸骨棘の高さ）に至る後腹膜に固定された部分
S（S状結腸）下行結腸に続く部分で、腸骨棘に対応する部分より岬角の高さまで
RS（直腸S状部）岬角の高さより第2仙椎下縁の高さまで
Ra（上部直腸）第2仙椎下縁の高さより腹膜反転部まで
Rb（下部直腸）腹膜反転部より膣骨直腸筋付着部上縁まで

B-9-4）肉眼型（病変）

O型：表在型
I：隆起型
Ip：有茎型
Isp：亜有茎型
Is：無茎型
II：表面型
IIa：表面隆起型
IIb：表面平扁型
IIc：表面陥凹型

注1：肉眼型は内視鏡所見を優先とし、組織発生や腫瘍、非腫瘍の違いを考慮せず、病変の形を全体像として捉える。
注2：二つの要素を有する腫瘍では、面積の広い病変を先に記載し、「+」でつなく。
注3：LST（laterally spreading tumor）は表層発育型腫瘍を表す用語であり肉眼型分類には含めない。
（LST：Granular (G) type（顆粒均一型 homogenous type 又は結節混在型 nodular mixed type））
Non-granular (NG) type (扁平隆起型 flat elevated type 又は偽陥凹型 pseudodepressed type)]

本研究では上記の規約に則り肉眼型を分類し、隆起・平坦・陥凹について以下のように取り扱う。
隆起型：0-I s、I sp、I p
平坦型：0-II a、II b
陥凹型：0-II c

B-10）使用内視鏡システム
(1) プロセッサ：オリンパス社製
EVIS LUCERA ELITE
(2) 学習用画像を記録する際に使用した大腸内視鏡スコープ：オリンパス社製
CF-Q260JU および H290TI
(3) 試験用画像を記録する際に使用した大腸内視鏡スコープ：オリンパス社製
CF-Q260JU および 290TI
(4) 画像記録装置：Sony 社製 HVO-1000MD/HVO-3300MT
(5) 大腸粘膜下層剝離術における穿孔予防のための人工知能による危険認識システム：サイバネットシステム社に依頼予定

C 研究対象者の選定方針

試験用画像は以下の場合を満たす患者のみ選定をすること。

C-1）選択基準
(1) 2009年1月から2019年10月までの期間に昭和大学横浜市北部病院消化器センターで大腸ESDを実施された患者
(2) 撮影時の年齢が20歳以上である患者
(3) 画像データの利用について拒否の意思表示がない患者

C-2）除外基準
(1) 炎症性腸疾患（広義）患者
(2) 家族性大腸腺腫症などの遺伝性ポリポーシス患者
(3) 研究担当医師の判断により不適格と判断した患者

診療情報の利用に伴う同意取得の方法：院内掲示又はホームページによるオプトアウトを行う。研究概要（研究目的・調査内容等）を適切に通知・公開し、診療情報の利用について適切な拒否機会を与えます。

2019/6版
研究期間
昭和大学横浜市北部病院臨床試験審査委員会承認後、病院長の研究実施許可を得てから
2021年9月30日まで

3. 研究に用いる試料・情報の種類
情報：内視鏡画像データ（動画）

4. お問い合わせ先
本研究に関するご質問等がありましたら下記の連絡先までお問い合わせ下さい。
ご希望があれば、他の研究対象者の個人情報及び知的財産の保護に支障がない範囲内で、研究計画書及び関連資料を閲覧することが出来ますのでお申し出下さい。
また、試料・情報が当該研究に用いられることについて患者さんもしくは患者さんの代理人の方にご了承いただけない場合には研究対象としませんので、下記の連絡先までお申し出ください。その場合でも患者さんに不利益が生じることはありません。

照会先および研究への利用を拒否する場合の連絡先：

所属：昭和大学横浜市北部病院消化器センター 研究責任者：林 武雄
住所：神奈川県横浜市都筑区茅ケ崎中央35-1 電話番号：045-949-7000